THE COMPOSTING PROCESS:
Testing and Monitoring

Defining the Issue

Because composting relies on biological processes to accomplish the breakdown of organic material, it cannot be switched on or off like a mechanical system. The best approach to ensure a high-quality end product is a proactive management strategy: being familiar with the characteristics of incoming feedstocks, monitoring the composting process, and testing the final product.

Key Concepts

In order to optimize a composting facility’s operation, useful information can be collected at three stages of the process:

- incoming feedstocks
- active composting of feedstock mix
- final product

Depending on the capability of your on-site testing facilities, some of these tests may best be handled by an independent laboratory; others are simple to perform on-site. The results of all tests, whether performed by facility staff or off-site lab, should be systematically recorded so that particular batches of compost can be identified and tracked. Accurate record-keeping can provide valuable insight if a specific mixture develops problems. A log of test results can also form a key part of your operations log, a detailed record of daily management that can provide proof of responsible facility operation.

Incoming feedstocks

The primary purpose in testing incoming feedstocks is to identify the characteristics of the material you will be working with. This information will help you to
make informed management decisions on the most balanced recipe mix you can produce and the final product you can expect. Whether a facility is receiving batches of variable material or a continuous supply of a consistent feedstock, knowing the materials’ physical and chemical characteristics is vital to successful processing decisions. Examples of feedstock tests Canadian operators have found helpful include:

- carbon : nitrogen ratio (C:N)
- trace element levels
- pH and electro-conductivity
- moisture content
- specific contaminant check, if the feedstock type is subject to problems

These characteristics can be used to determine if the material is one you wish to accept at your facility—some materials with high levels of trace elements, for example, can result in comports which exceed the limits set in the national quality standards for compost that can be applied to land.

Other characteristics aid in “recipe” formulation, allowing operators to blend different materials together to create a mixture whose characteristics fall within the recommended limits [see Recipe Formulation in Useful Tools].

If the processing leachate is being collected and used to re-wet the composting material, checks on the leachate’s trace element content will help you avoid concentrating undesirably high levels of problem elements into your finished product.

Composting Material

Once the material is mixed and composting is underway, measurements can be taken to monitor the actual process. Temperature, moisture content, and oxygen levels can inform decisions on composting activities such as turning, aerating, or adding moisture. These tests can be performed quite simply on site, giving quick feedback—from minutes for temperature or oxygen to overnight for moisture content.
Temperature: The rise in temperature in a composting mass is the result of heat given off by the micro-organisms as they break down the material. Temperature is simple to measure and the equipment is relatively inexpensive—though it does not give specific information on which factors may be out of balance (C:N ratio, moisture, or oxygen), it provides a quick check on how active the composting process is (see *Temperature*, Useful Tools).

Equipment commonly in use to monitor compost temperature in Canadian facilities includes stainless steel probes attached to either a mechanical dial or to a computerized reader, and thermocouples connected to either a hand-heal reader or a centralized computer. Some systems are left in place between compost turnings, while others are inserted and removed for each set of measurements. Whatever type of equipment is chosen, temperature should be measured in the center of the composting mass: the outside or top layer is likely to be both drier and cooler, and so is not representative of the majority of the material. Probes should be inserted deep into the material and given time to stabilize before readings are recorded.

<table>
<thead>
<tr>
<th>Temperature pattern</th>
<th>Possible cause</th>
<th>Management options</th>
</tr>
</thead>
</table>
| **Temperature failing to rise** | - Material too dry
- Material too wet
- Insufficient nitrogen
- Air temp too low | - Check moisture content; add moisture
- Mix in dry material; spread material out to dry
- Check C:N ratio; mix in feedstock high in nitrogen
- Insulate: use larger piles or add a “blanket” of finished compost; wait for warmer weather |
| **Temperature exceeding 65°C** | - Process overactive: composting will be less effective; risk of fire. | - Introduce air to material: turn, aerate
- Add moisture if material is drying out
- Add carbon source if C:N ratio is low |
Moisture: moisture can be measured accurately at any stage of the composting process using the 24-hour drying method [see Moisture content measurement—procedure in Useful Tools]. Once a mixture is actively composting, a basic squeeze test is often enough to reassure the operator of sufficient moisture for effective breakdown: squeeze a handful of the material tightly in your fist. The material should feel like a wrung-out sponge, releasing at most only a few drops of moisture.

Finished Product

Finished product testing can provide reassurance that your product meets Canadian composting product standards with regards to trace element levels, foreign matter content, maturity, and pathogen destruction [see National Standards in Useful Tools]. Testing can also go beyond these basic measurements of product safety to provide a dynamic marketing tool—knowing your finished product’s agronomic capabilities can help you target the end users of your compost, as they are often looking for specific product characteristics to enhance their plantings. Tests which Canadian facility operators and compost marketers have found helpful include:

• **Product safety/national quality guidelines:**
 - trace element content
 - foreign matter content
 - maturity
 - pathogen testing

• **Agronomic capabilities:**
 - total fertilizer value (N, P, K)
 - total organic matter content (%)
 - water-holding capacity, especially in arid regions
 - electro-conductivity
 - growth trial results with particular crops as appropriate to your market area (e.g. turfgrass, field crops, orchard crops, etc)
 - pH
Useful Tools:
Recipe formulation:
http://www.cfe.cornell.edu/compost/calc/simultaneous.html [contains spreadsheets]
Temperature:
http://www.cfe.cornell.edu/compost/monitor/monitortemp.html
Moisture content measurement—procedure:
http://www.cfe.cornell.edu/compost/calc/moisture_content.html [first step can be used at any stage during composting to determine moisture content].
National Standards
http://www.compost.org/ccc.sw&r.legislation.PDF

Additional Informational Links:
US Composting Council: http://compostingcouncil.org/index.cfm
Cornell Composting: http://www.cfe.cornell.edu/compost/Composting_homepage.html
US Environmental Protection Agency Composting: http://www.epa.gov/compost/
The Composting Association of the UK: http://www.compost.org.uk/dsp_home.cfm
Washington State University Compost Connection: http://csanr.wsu.edu/compost/
Compost Education and Resources for Western Agriculture: http://www2.aste.usu.edu/compost/
Recycling and Composting Online: http://www.recycle.cc/

Feedback:
Are you an operator who has had experiences—faced particular challenges, solved specific problems—that would be of help to other operators? To share tips or solutions your facility has developed with regards to the subjects in this fact sheet, please click on the button below. Thanks for sharing your practical ingenuity! [%%%]