Influence of Diverse Compost Products on Soil Bacterial and Fungal Community in Potato Production System

Claudia Goyer, Saraswoti Neupane, Bernie J. Zebarth, David L. Burton, Carolyn Wilson
Productivity Challenge

Average potato yield (Statistics Canada) per year

Factors reducing potato yields

- Rolling landscape, shallow soils
- Bare soil exposed in fall and spring
- Frequent soil tillage (e.g. for planting, hilling, harvest)
- Minimal crop residue returned to soil
- Short (mostly 2 year) rotations
- Intensive practices = decline in soil quality
Compost to the rescue?

Potential benefit of compost

- Improves soil quality
- Increased SOM, aggregation, water holding capacity
 - Decreased bulk density
- Reduced severity of soil borne pathogen diseases
- More predictable nutrient availability than raw manure
- Can increase potato yields – water holding capacity
- Increases microbial community diversity
Objective

Determine the effect of three compost products on soil physico-chemical properties, potato productivity and bacterial and fungal community diversity.

Three compost products:

SSOC: Municipal Source Separated Organic Compost
FPMC: Forestry and Poultry Manure Compost
FRC: Forestry Residue Compost
Compost product properties

<table>
<thead>
<tr>
<th>Property</th>
<th>SSOC</th>
<th>FPMC</th>
<th>FRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>C:N</td>
<td>15</td>
<td>26</td>
<td>59</td>
</tr>
<tr>
<td>DM (%)</td>
<td>48</td>
<td>58</td>
<td>42</td>
</tr>
<tr>
<td>Ash (%)(^1)</td>
<td>55</td>
<td>73</td>
<td>55</td>
</tr>
<tr>
<td>pH</td>
<td>7.7</td>
<td>7.6</td>
<td>7.2</td>
</tr>
<tr>
<td>C (%)(^1)</td>
<td>25</td>
<td>15</td>
<td>23</td>
</tr>
<tr>
<td>N (%)(^1)</td>
<td>1.8</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>NH(_4)-N:NO(_3)-N</td>
<td>2.5</td>
<td>1.0</td>
<td>>8.3</td>
</tr>
</tbody>
</table>

\(^1\)dry matter basis
Material and Methods

Experimental site and sampling
- Site located at AAFC, Fredericton, NB
- 2014: barley crop; 2015: potato crop
- October 2014: 45 tonnes ha\(^{-1}\) (dry weight basis)
- Randomized complete block design with four replicates
- Sampling done in October 2014 (after compost application), spring, summer and fall 2015

- **Treatments:**
 1. Control: no compost
 2. SSOC
 3. FPMC
 4. FRC
Material and Methods

Ancillary measurements
- Soil organic carbon (SOC)
- Particulate organic matter carbon (POM-C)
- Permanganate oxidizable carbon (POX-C)
- Soil pH
- Soil moisture
- Potato tuber yield

Bacterial and fungal community
- Amplicon-based metagenomics
 - 16S rRNA gene - bacteria
 - Ribosomal Internal transcribed spacer (ITS)
- Sequencing by Illumina MiSeq
Results

Organic carbon improved soil structure

<table>
<thead>
<tr>
<th></th>
<th>Average C applied (tonnes ha$^{-1}$ yr$^{-1}$)</th>
<th>Bulk density 2015 (g cm$^{-3}$)</th>
<th>Permeability 2015 (cm hr$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0</td>
<td>1.04</td>
<td>26.8</td>
</tr>
<tr>
<td>SSOC</td>
<td>11</td>
<td>0.98*</td>
<td>43.5*</td>
</tr>
<tr>
<td>FPMC</td>
<td>7</td>
<td>1.02</td>
<td>34.7</td>
</tr>
<tr>
<td>FRC</td>
<td>11</td>
<td>0.96*</td>
<td>38.6*</td>
</tr>
</tbody>
</table>

*Significantly different from the control

More Carbon = More Benefits

Results

Compost changes soil organic carbon pools

Dissolved Organic Carbon

- **Control**
- **SSOC**
- **FPMC**
- **FRC**

Respiration

- **Control**
- **SSOC**
- **FPMC**
- **FRC**

ANOVA ≤ 0.05
Results

- **Soil organic carbon**
- **Permanganate oxidizable carbon (POX-C)**
- **Particulate organic matter (POM-C)**

ANOVA ≤ 0.05

- Size fraction of soil organic matter between 0.053 and 2 mm
- Partially decomposed plant and organic material
Results

Soil pH

Gravimetric water content (GWC)

ANOVA ≤ 0.05
Results

Compost application did not affect potato yield

Results

Potato yields in 19 site-years commercial potato fields in New Brunswick (Canada) with and without FPMC application

Results – Relative abundance of phyla in composts

Bacteria
- Armatimonadetes
- Chloroflexi
- Gemmatimonadetes
- candidate_division_WPS-1
- Bacteroidetes
- Planctomycetes
- Verrucomicrobia
- Actinobacteria
- Proteobacteria
- Acidobacteria

Fungi
- Ascomycota
- Basidiomycota
- Zygomycota
- Rozellomycota
- Chytridiomycota
- Glomeromycota

ANOVA ≤ 0.05
Results – biodiversity indices of composts

Bacteria

- **Chao1 richness**
 - SSOC: c
 - FPMC: b
 - FRC: a

- **Pielou’s evenness**
 - SSOC: a
 - FPMC: b
 - FRC: b

Fungi

- **Chao1 richness**
 - SSOC: a
 - FPMC: a
 - FRC: b

- **Pielou’s evenness**
 - SSOC: b
 - FPMC: a
 - FRC: b

ANOVA ≤ 0.05
Results – Compost Microbiome

β-diversity using multidimensional scaling (MDS)

Bacteria

- 2D Stress: 0.14

Fungi

- 2D Stress: 0.09

PERMANOVA p=0.004

PERMANOVA p=0.001
Results – Soil Microbiome

Relative abundance averaged over time (%)

Bacteria

- Acidobacteria
- Proteobacteria
- Actinobacteria
- Planctomycetes
- Verrucomicrobia
- Bacteroidetes
- Chloroflexi
- Candidate division WPS-1
- Gemmatimonadetes

Fungi

- Ascomycota
- Basidiomycota
- Zygomycota
- Chytridiomycota

ANOVA ≤ 0.05

* Significant differences from Control
Results - Soils

Relative abundance (%)

Acidobacteria

- Control
- SSO
- FPMC
- FRC

ANOVA ≤ 0.05
Results - Soils

Relative abundance of bacterial species

<table>
<thead>
<tr>
<th>Composts</th>
<th>Soils – 2 weeks after application</th>
<th>Soils – 11 months after application</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTU2 Arthrobacter</td>
<td>OTU2 Arthrobacter</td>
<td>OTU1 Acidobacteria Gp6</td>
</tr>
<tr>
<td>OTU49 Sporosarcina</td>
<td>OTU1 Acidobacteria Gp6</td>
<td>OTU3 Acidobacteria Gp4</td>
</tr>
<tr>
<td>OTU42 Thiobacillus</td>
<td>OTU8 Massilia</td>
<td>OTU4 Acidobacteria Gp16</td>
</tr>
<tr>
<td>OTU43 Pseudomonas</td>
<td>OTU3 Acidobacteria Gp4</td>
<td>OTU6 Spartobacteria</td>
</tr>
<tr>
<td>OTU56 Bacteria_unclassified</td>
<td>OTU4 Acidobacteria Gp16</td>
<td>OTU7 Bradyrhizobium</td>
</tr>
<tr>
<td>OTU28 Bacteria_unclassified</td>
<td>OTU6 Spartobacteria</td>
<td>OTU5 Acidobacteria Gp16</td>
</tr>
<tr>
<td>OTU33 Chloroflexi</td>
<td>OTU10 Acidobacteria Gp4</td>
<td>OTU47 Anaerolineaceae</td>
</tr>
<tr>
<td>OTU68 Planomicrobiurn</td>
<td>OTU12 Sphingomonadaceae</td>
<td>OTU10 Acidobacteria Gp4</td>
</tr>
<tr>
<td>OTU123 Bacteria_unclassified</td>
<td>OTU17 Acidobacteria Gp7</td>
<td>OTU19 Spartobacteria</td>
</tr>
<tr>
<td>OTU44 Cryobacterium</td>
<td>OTU11 Planctomycetaceae</td>
<td>OTU11 Planctomycetaceae</td>
</tr>
<tr>
<td>OTU40 Rhizobium</td>
<td>OTU40 Rhizobium</td>
<td>OTU12 Sphingomonadaceae</td>
</tr>
<tr>
<td>OTU23 Devosia</td>
<td>OTU16 Acidobacteria Gp16</td>
<td>OTU10 Acidobacteria Gp4</td>
</tr>
<tr>
<td>OTU21 Acidobacteria Gp6</td>
<td>OTU13 Rhizobiales</td>
<td>OTU11 Planctomycetaceae</td>
</tr>
<tr>
<td>OTU37 Microbacteriaceae</td>
<td>OTU15 Betaproteobacteria</td>
<td>OTU13 Rhizobiales</td>
</tr>
<tr>
<td>OTU71 Anaerolineaceae</td>
<td>OTU15 Betaproteobacteria</td>
<td>OTU18 Gemmatimonas</td>
</tr>
<tr>
<td>OTU85 Anaerolineaceae</td>
<td>OTU16 Acidobacteria Gp16</td>
<td>OTU15 Betaproteobacteria</td>
</tr>
<tr>
<td>OTU154 Bacteroidetes</td>
<td>OTU13 Rhizobiales</td>
<td>OTU17 Acidobacteria Gp7</td>
</tr>
<tr>
<td>OTU84 Polaromonas</td>
<td>OTU15 Betaproteobacteria</td>
<td>OTU16 Acidobacteria Gp6</td>
</tr>
<tr>
<td>OTU133 Methylocaldum</td>
<td>OTU26 Acidobacteria Gp6</td>
<td>U39 Unclass. Xanthomonadales</td>
</tr>
<tr>
<td>OTU61 Bacteria_unclassified</td>
<td>OTU14 Acidobacteria Gp7</td>
<td>OTU14 Acidobacteria Gp7</td>
</tr>
</tbody>
</table>

Control | SSOC | FPMC | FRC | Control | SSOC | FPMC | FRC
Results - Soils

Relative abundance of fungal species

Composts
- OTU7958 *Arthrobotrys*
- OTU6989 Unidentified fungi
- OTU4154 *Ascomycota*
- OTU848 *Ascomycota*
- OTU4026 *Mortierella*
- OTU7678 *Serendipita*
- OTU1074 *Mucor*
- OTU3200 *Mortierella*
- OTU6033 *Peziza*
- OTU7606 *Auriculariales*
- OTU1178 *Mortierella*
- OTU7620 *Blastobotrys*
- OTU7687 *Orbiellaceae*
- OTU1440 Unidentified fungi
- OTU752 *Scedosporium*
- OTU3457 Unidentified fungi
- OTU8178 *Coprinellus*
- OTU4463 *Ascomycota*
- OTU756 *Coprinopsis*
- OTU2193 *Sebacinales*

Soils – 2 weeks after application
- OTU5550 *Mortierella*
- OTU1239 *Mortierella*
- OTU5456 *Capnodiales*
- OTU1807 *Podospora*
- OTU1689 *Myrothecium*
- OTU2084 *Nectriaceae*
- OTU1093 *Podospora*
- OTU7057 *Sebacinales*
- OTU5548 *Alternaria*
- OTU6383 *Fusarium*
- OTU3728 *Capnodiales*
- OTU7193 *Mortierella*
- OTU2421 *Sordariomycetes*
- OTU3531 *Humicola*
- OTU4149 *Auriculariales*
- OTU310 *Humicola*
- OTU1299 *Mortierella*
- OTU1172 *Alternaria*
- OTU4594 *Spizellomyces*
- OTU2136 *Phallus*

Soils – 11 months after application
- OTU5456 *Capnodiales*
- OTU5548 *Alternaria*
- OTU1172 *Alternaria*
- OTU3728 *Capnodiales*
- OTU1239 *Mortierella*
- OTU5550 *Mortierella*
- OTU5940 *Fusarium*
- OTU1772 *Gibberella*
- OTU2421 *Sordariomycetes*
- OTU4151 *Apodus*
- OTU4484 *Pleosporales*
- OTU16 *Phaeosphaeriaceae*
- OTU7193 *Mortierella*
- OTU508 *Mucor*
- OTU6403 *Articulospora*
- OTU7992 *Cryptococcus*
- OTU1299 *Mortierella*
- OTU3854 *Colletotrichum*
- OTU2084 *Nectriaceae*
- OTU4149 *Auriculariales*
Results – biodiversity indices of soils

Bacteria

- **Chao1 richness**
- **Pielou’s evenness**

Fungi

- **Chao1 richness**
- **Pielou’s evenness**

ANOVA ≤ 0.05
Results - Soils

\(\beta \)-diversity among treatments - nMDS

Bacteria

2D Stress: 0.15

PERMANOVA \(p=0.001 \)

Fungi

2D Stress: 0.19

PERMANOVA \(p=0.001 \)
Results

β-diversity over time - nMDS

Bacteria

PERMANOVA p=0.001

2D Stress: 0.15

Fungi

PERMANOVA p=0.001

2D Stress: 0.19
Conclusions

- Compost application changed soil structure, nutrient levels and affected different labile soil organic carbon fractions.

- Compost changed the relative abundance of bacterial phyla in soils but not on the relative abundance of fungal phyla.

- Compost application resulted in a change in the diversity of bacterial and fungal communities that could be observed in the next growing season.

- Compost application did not result in an increase in potato yield.

- Compost is a good option to remediate poor quality soil but adoption by growers is difficult due to cost and the low potential for short-term return on investment.
Acknowledgments

- Funding source: Agri-Innovation Program, Agriculture and Agri-Food Canada

- Collaborators: Dr. Bernie Zebarth, Dr. David Burton (Dalhousie University)

- Sean Whitney, Sara Neupane, Carolyn Wilson, Ginette Decker, Karen Terry, Kyle MacKinley
Composts

SSOC: organic curb-side waste composted in-vessel (Elmsdale Landscaping Inc.)

FPMC: windrow composting of poultry manure and wood shaving bedding, forestry wastes, paper mill residue, and wood ash (Brand RV045, Envirem Organics Inc.)

FRC: windrow composted predominantly from wood-waste feedstock including bark, paper mill residue, and wood-ash with approximately 5% broiler chicken manure (Black Earth, Envirem Organics Inc.).